

Universidade Federal de Santa Catarina – UFSC Centro Tecnológico – CTC Departamento de Automação e Sistemas – DAS

Disciplina DAS5109 – Modelagem e Simulação de Processos

Plano de Ensino¹ – período 2021.1

Florianópolis, 17 de maio de 2021.

- Professor: Marcelo De Lellis Costa de Oliveira.
 - Contato: marcelo.lellis@ufsc.br ou por mensagem via Moodle da disciplina.
- Disciplina obrigatória da 5ª fase do curso de graduação em Engenharia de Controle e Automação da UFSC/Florianópolis.
- Pré-requisitos: DAS5114 (Sinais e Sistemas Lineares) e EEL7540 (Circuitos Elétricos para Automação).
- Carga horária: 72 horas-aula (h.a.)², 4 créditos (2 de teoria + 2 de prática não presencial).
 - Aulas de laboratório não presenciais: 2 h.a. semanais de atividades assíncronas ou síncronas, de acordo com o cronograma; turma A às 15h10, turma B às 13h30.
 - Aulas teóricas: 2 h.a. semanais de atividades **síncronas**, às quintas-feiras às 16h20.
- Calendário de atividades do período regular³: do dia 17/06/2021 ao dia 23/09/2021 (15 semanas).
- Medidas relativas ao ensino remoto: são consideradas aquelas veiculadas no Ofício Circular Conjunto nº 003/2021/PROGRAD/SEAI, de 20 de abril de 2021.
- Objetivos: desenvolver habilidades de modelagem matemática de sistemas dinâmicos por meio de equações diferenciais e a diferenças. Paralelamente às questões técnicas, a disciplina também visa a desenvolver habilidades de documentação de projetos por meio da escrita de relatórios concisos, claros, com rigor técnico e de acordo com a norma-padrão (gramática, ortografia etc.) da língua portuguesa.
- Ementa: modelagem fenomenológica versus empírica; processos e sistemas mecânicos, elétricos, térmicos, hidráulicos, químicos e bioquímicos; colunas de destilação; representação por diagramas de blocos e diagramas de instrumentação; balanço de massa e energia de processos químicos e bioquímicos; processos contínuos e de batelada; modelagem com parâmetros concentrados e distribuídos; simulação computacional de processos; introdução à identificação de sistemas.

 $^{^{-1}}$ Conforme Calendário Suplementar Excepcional instituído pela Resolução nº 06/2021/CUn, de 30 de março de 2021.

²1 hora-aula (1 h.a.) corresponde a 50 minutos.

³i.e. excluindo-se a semana de recuperação, ao final da disciplina.

• Metodologia:

- 1. Abordagem interdisciplinar, buscando resgatar e relacionar conceitos vistos em disciplinas anteriores nas áreas de controle, física, matemática, sistemas elétricos e mecânicos etc. aplicados preferencialmente ao estudo de problemas reais.
- 2. Como ferramenta computacional de simulação pode ser usado o software Matlab/Simulink, além dos softwares gratuitos Octave e Scilab.
- 3. Em geral, cada assunto na ementa será apresentado à turma em uma videoaula síncrona, com base no conteúdo já compilado pelo professor, com auxílio de uma apostila. A parte inicial da videoaula será gravada e disponibilizada no Moodle; nesta etapa, os estudantes que fizerem perguntas por áudio ou vídeo estarão automaticamente consentindo que a sua interação faça parte da gravação disponibilizada à turma. Ao término desta etapa, será aberta a palavra à turma para interação sem gravação.
- 4. Para a realização dos experimentos a turma será dividida em grupos de dois ou três integrantes. O número de grupos incluindo ambas as turmas não deve superar 12.
- 5. Cada experimento consiste em pelo menos duas aulas: na primeira é apresentado o enunciado de forma **assíncrona** via Moodle, geralmente acompanhado de um vídeo explicativo, e dá-se início ao período previsto no cronograma para a sua resolução. Cada grupo deve entregar via Moodle um relatório técnico⁴ **conciso** contendo os principais resultados, apresentados de maneira clara, com rigor e em conformidade com a normapadrão da língua portuguesa.
- 6. A aula de conclusão do experimento ocorrerá de forma **síncrona**. Pelo menos um grupo será aleatoriamente escolhido para apresentação da sua resolução e discussão sobre o tema juntamente com a turma. Esta aula não será gravada. Para a apresentação, cada grupo poderá utilizar o relatório entregue.
- 7. Nas aulas **assíncronas** o professor permanecerá à disposição para atendimento preferencialmente via fórum da turma no Moodle. Se necessário poderá ser agendada videoconferência com os estudantes interessados, em cujo caso será utilizada a sala virtual da plataforma Google Meet reservada para as aulas de laboratório.
- 8. Os grupos que trouxerem informações complementares e relevantes ao conteúdo apresentado pelo professor ou fomentarem discussões construtivas junto à turma receberão um complemento de nota.
- 9. A cada experimento de cada grupo será atribuída uma nota com base no relatório técnico. No caso de apresentação **síncrona**, esta também será considerada na composição da nota em conjunto com o relatório. Na apresentação serão avaliadas a capacidade de organização de ideias e expressão oral dos autores, o entendimento do assunto e as respostas a eventuais questionamentos feitos sobre o tema.
- 10. Na modalidade de ensino remoto, os relatórios são considerados como "provas"; além disso, seus prazos de entrega costumam expirar logo antes das respectivas apresentações. Sendo assim, **não será tolerado atraso na entrega** dos relatórios. Portanto, havendo necessidade, é menos danoso entregar um relatório incompleto no prazo do que um relatório completo atrasado.
- 11. Atenção: observando-se plágio de relatório, ainda que parcial (i.e. algumas questões), será atribuída nota zero no experimento em questão. Casos de reincidência acarretarão reprovação na disciplina.

⁴Como sugestão, é fornecido um documento-padrão (em I^AT_EX) para os relatórios.

- 12. Apesar da realização dos experimentos em grupo, as notas serão individuais, ou seja, poderá haver diferenciação de nota entre os integrantes se constatadas razões para tal.
- Avaliação: a nota final (NF) da disciplina corresponde à média **ponderada**, pelo prazo de entrega, entre os experimentos de laboratório. Observações:
 - 1. Todas as notas são de 0.0 a 10.0, com resolução de 0.5 (meio ponto).
 - 2. A aprovação na disciplina requer média igual ou superior a 6.0 e frequência mínima de 75% nas aulas. Cabe a cada aluno controlar sua frequência, que será registrada pelo professor no Moodle.
 - 3. Atividades **síncronas** terão frequência atestada com a presença do estudante na sala virtual de aula. Já a frequência das **assíncronas** será atestada mediante entrega do relatório do experimento correspondente.
 - 4. Aqueles que, ao final da disciplina, obtiveram frequência suficiente e nota preliminar (NP) entre 3.0 e 5.5 terão direito a um trabalho de recuperação (TR). Neste caso, a nota final será calculada como a média aritmética entre NP e TR.
 - 5. Será utilizado o Moodle para o acompanhamento da disciplina, incluindo a disponibilização da apostila, *links* para as aulas, a submissão e retorno de relatórios, registro de notas e informes. Isto, entretanto, não exclui o uso de outras ferramentas, como o Google Meet para as videoaulas, devidamente anunciadas via Moodle.
- Cronograma: as atividades da disciplina estão agendadas conforme Tabelas 1 e 2. Na coluna "Tipo" é indicado se a atividade é síncrona (s) ou assíncrona (a).

Tabela 1: Cronograma da 1^a metade da disciplina.

Sem.	Data	Aula	Tipo	Descrição
1	16/06	_	_	Sem aula de laboratório.
_	17/06	Teo. 1	s	Apresentação da disciplina. Introdução à modelagem de siste-
				mas.
2	23/06	Exp. 1	a	Introdução à simulação de sistemas.
_	24/06	Teo. 2	s	Transformada de Laplace. Expansão de funções em frações par-
				ciais. Função de transferência.
3	30/06	Exp. 1	a	Acompanhamento.
_	01/07	Teo. 3	s	Sistemas elétricos e conversores CC-CC. Equilíbrio de sistemas.
4	07/07	Exps. 1 e 2	s	Apresentações do exp. 1. Exp. 2: sistemas fotovoltaicos.
_	08/07	Teo. 4	s	Estabilidade e linearização de sistemas. Espaço de estados.
5	14/07	Exp. 2	a	Acompanhamento.
_	15/07	Teo. 5	s	Diagramas de blocos. Controle feedforward. Sistemas eletrome-
				cânicos.
6	21/07	Exps. 2 e 3	s	Apresentações do exp. 2. Exp. 3: aerogerador (sistemas eletro-
				mecânicos).
_	22/07	Teo. 6	s	Transformada Z. Modelagem no tempo discreto e discretização
				de sistemas.
7	28/07	Exp. 3	a	Acompanhamento.
_	29/07	Teo. 7	s	Introdução à identificação de sistemas. Método dos mínimos qua-
				drados.
8	04/08	Exps. 3 e 4	S	Apresentações. Exp. 4: freezer (sistemas térmicos).
	05/08	Teo. 8	S	Processos térmicos.

Data Aula Sem. Tipo Descrição 9 11/08 Exp. 4 Acompanhamento. 12/08Teo. 9 Processos fluídicos. 10 18/08Exps. 4 e 5 Apresentações do exp. 4. Exp. 5: processos fluídicos. \mathbf{S} 19/08Teo. 10 Colunas de destilação. Controle desacoplante em sistemas MIMO. 25/08Exp. 5 Acompanhamento. 11 a 26/08Teo. 11 Processos químicos. \mathbf{S} $1\overline{2}$ Apresentações do exp. 5. Exp. 6: processos bioquímicos. Exps. 5 e 6 01/09 \mathbf{S} 02/09Teo. 12 Processos bioquímicos. $_{\mathrm{S}}$ 13 08/09Exp. 6 Acompanhamento. a 09/09Teo. 13 Introdução à mecânica Lagrangiana. \mathbf{S} 14 15/09Exp. 6 \mathbf{S} Apresentações. Exp. 7 16/09Modelagem de sistemas por mecânica lagrangiana. \mathbf{S} 15 22/09Exp. 7 Acompanhamento. a Exp. 7 e TR Apresentações do exp. 7. Fim do período regular da disciplina 23/09 \mathbf{S} (para cálculo da média preliminar). Enunciado do Trabalho de Recuperação (TR) para quem não tenha sido aprovado no período regular. 16 29/09 \overline{TR} Apresentações. $_{\rm S}$ Anúncio das notas finais e encerramento da disciplina. 30/09término do período letivo 2021.1. 02/10

Tabela 2: Cronograma da 2ª metade da disciplina.

Bibliografia básica

Marcelo De Lellis Costa de Oliveira. Fundamentos de Modelagem, Identificação e Controle de Sistemas (apostila da disciplina), 2021. Edição do autor.

Bibliografia complementar (opcional)

- [1] Ivo Barbi. Modelagem de Conversores CC-CC empregando Modelo Médio em Espaço de Estados. (edição do autor), 2015. ISBN: 978-85-901046-9-8.
- [2] Antonio Augusto Rodrigues Coelho e Leandro dos Santos Coelho. *Identificação de Sistemas Dinâmicos Lineares*. 2ª ed. Editora da UFSC, 2016. ISBN: 978.85.328.0730-4.
- [3] Claudio Garcia. *Modelagem e Simulação*. 2ª ed. São Paulo, Brasil: Editora da USP, 2005. ISBN: 85-314-0904-7.
- [4] Katsuhiko Ogata. Discrete-Time Control Systems. Prentice Hall, 1987. ISBN: 0-13-216227-X.
- [5] Katsuhiko Ogata. *Engenharia de Controle Moderno*. 4ª ed. São Paulo, Brasil: Pearson Prentice Hall, 2003. ISBN: 85-87918-23-0.
- [6] F. G. Shinskey. Process Control Systems: Application, Design and Tuning. 4ª ed. McGraw-Hill, 1996. ISBN: 0-07-057101-5.
- [7] George Stephanopoulos. Chemical Process Control: an Introduction to Theory and Practice. PTR Prentice Hall, 1984. ISBN: 0-13-128629-3.

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E SISTEMAS

Florianópolis, 7 de junho de 2021.

Projeto de Estágio de Docência

1 Apresentação

É ofertado um estágio de docência para alunos do Programa de Pós-Graduação em Engenharia de Automação e Sistemas (PPGEAS) no período letivo 2021.1. A vaga é na disciplina de **Modelagem e Simulação de Processos** (DAS 5109), na 5ª fase do curso de graduação em Engenharia de Controle e Automação da UFSC em Florianópolis. Esta disciplina será ministrada unicamente por mim, prof. Marcelo De Lellis Costa de Oliveira, e portanto o(a) estagiário(a) estará sob minha supervisão. O **plano de ensino** da disciplina encontra-se **anexo**. Sugere-se que o(a) candidato(a) leve em consideração as informações ali contidas (por exemplo, horários das aulas e ementa) antes de optar por este estágio.

2 Objetivos

- Oferecer uma experiência de docência ao(à) estagiário(a), a qual será particularmente relevante no caso de futura opção pela carreira docente.
- Expandir a capacidade de atendimento à turma, especialmente nas aulas de laboratório.
- Enriquecer a disciplina com novos conhecimentos, visões e discussões que o(a) estagiário(a) poderá trazer.

3 Plano de Atividades do Estágio

Atividade	Carga horária (h)
Apoio semanal (1h) no atendimento aos alunos	14
Preparação e aplicação de uma aula teórica supervisionada	8
Preparação de um roteiro de experimento	8
Total	30

4 Requisitos

O(a) candidato(a) deve possuir:

- formação compatível com a ementa da disciplina.
- conhecimento em linguagem Matlab/Simulink; conhecimento em Python é desejável.
- compatibilidade com os horários da disciplina e do professor.

Atenciosamente,

Prof. Marcelo De Lellis Costa de Oliveira